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Knowledge Graphs (KGs)

 Structured representation of commonsense and domain knowledge

Knowledge Base (KB)
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https://en.wikipedia.org/wiki/Knowledge_graph
2Ernst, Patrick, Amy Siu, and Gerhard Weikum. "Knowlife: a versatile approach for constructing a large knowledge graph for biomedical sciences." BMC

bioinformatics 16.1 (2015): 1-13.



KGs in NLP

* Question Answering
e QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question Answering

* GreaseLM: Graph REASoning Enhanced Language Models for Question Answering

* Text generation
* Text generation from knowledge graphs with graph transformers

* Language Generation with Multi-Hop Reasoning on Commonsense Knowledge Graph

* Knowledge and LMs

 KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation

e BertNet: Harvesting Knowledge Graphs from Pretrained Language Models

* Social text analysis
e Compare to The Knowledge: Graph Neural Fake News Detection with External Knowledge

e KCD: Knowledge Walks and Textual Cues Enhanced Political Perspective Detection in News Media



https://aclanthology.org/2021.naacl-main.45/
https://arxiv.org/abs/2201.08860
https://arxiv.org/abs/1904.02342
https://arxiv.org/abs/2009.11692
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00360/98089/KEPLER-A-Unified-Model-for-Knowledge-Embedding-and
https://arxiv.org/abs/2206.14268
https://aclanthology.org/2021.acl-long.62.pdf
https://aclanthology.org/2022.naacl-main.304.pdf

Three lanes of using KG in NLP

* Feature extraction

* Extract features with KG embedding models
* |Inject such features

e Enhance LMs

* Incorporating KGs into pre-trained LMs
* Mostly with adapters

* Graph and GNNs
* KG subgraphs with GNNs
 Document graph with GNNs



1/3 Feature Extraction
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Figure 2: The overview of our proposed model CompareNet.

3Hu, Linmei, et al. "Compare to the knowledge: Graph neural fake news detection with external knowledge." Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 2021.



2/3 Enhance LMs

 Mixture-of-Partitions®
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Figure 1: Overview of the proposed MoP.

*Meng, Zaiqgiao, et al. "Mixture-of-Partitions: Infusing Large Biomedical Knowledge Graphs into BERT." Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing. 2021.



3/3 Graph and GNNs

* GreaseLM> and KGAP®
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News Graph Construction

GNNs on KG subgraphs GNNs on “document graphs”

°Zhang, X., et al. "GreaseLM: Graph REASoning Enhanced Language Models for Question Answering." International Conference on Representation Learning (ICLR). 2022.
®Feng, Shangbin, et al. "KGAP: Knowledge Graph Augmented Political Perspective Detection in News Media." arXiv preprint arXiv:2108.03861 (2021).



However...

* Multi-hop knowledge reasoning is missing

Source: Daily Kos Stance: Left

CNN is reporting that the Trump campaign were
offered access to Wikileaks documents, including
special access to a Wikileaks website, a
month before Wikileaks began publishing «+----

The email, which apparently slipped the memory of
history’s most forgetful campaign team, included
a decryption key and address for documents stolen
by Russian hackers and later +«+-*

He claimed that ++++-* Chooeees That means that the vast
amount of stuff that we are publishing about Clinton
will have a much higher impact, because it won’t be
perceived as coming from ---°-
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Knowledge Walk

* Knowledge walk: multi-hop path on knowledge graphs

* However, ...
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KCD

* Enable multi-hop knowledge reasoning with

Textual Cues Extraction

Semantic Cues
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Knowledge Walk Generation

<nowledge walks

Graph Construction
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1/5 knowledge walk (kw) generation

e Biased random walk on KGs
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Knowledge Walk Generation

K-hop knowledge walk:

kwi - {6(0)) 0,1, e(l)a vy TK—1,K e(K)} (2)

Arriving at e from ey

exp(p(ri-1,i))

SV Dl eap(p(r)))
(3)

P(ew)lei-1),ri-13) =

P(r): importance of relation r



2/5 kw importance estimation

* kw aggregation based on semantic relevance
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3/5 knowledge infusion

* Infuse kw representations with document representations

vi®: paragraph i LM representation
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Quick recap
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4/5 document graph construction

 Leverage “textual cues”

» External labels generated by tools such as NLTK and LDA

* Topic

e Sentiment
* Tense

Quotation

e That’s beside the point

Textual Cues Extraction
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5/5 representation learning

e Relational GNNs

Graph Construction
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1/3 experiments

e KCD is good
* Knowledge walks are essential

SemEval AllSides
Acc MaF | Acc MaF

GloVe 79.63 N/A | NJA N/A

Method Setting

CNN ELMo 84.04 N/A | NJA N/A
GloVe 81.58 N/A | NJA N/A
prstm  ELMo 83.28 N/A | NJA N/A

Embed |81.71 N/A | 7645 74.95
Output | 81.25 N/A | 76.66 75.39

Word2Vec | 70.27 39.37 | 48.58 34.33
GloVe 80.71 63.64 | 71.01 69.81
Text Model ELMo 86.78 80.46 | 81.97 81.15
BERT 86.92 80.71 | 82.46 81.77
RoBERTa | 87.08 81.34 | 85.35 84.85

GloVe 81.58 79.29 | 78.29 76.96

MAN ELMo 84.66 83.09 | 81.41 80.44
Ensemble | 86.21 84.33 | 85.00 84.25
KGAP GRGCN 89.56 84.94 | 86.02 85.52
GA 88.52 84.13 | 86.02 85.53
KCD CA 89.77 85.26 | 81.28 80.39
PA 90.87 87.87 | 87.38 87.14
_ Q K [
KCD (PA) w/o TC 88.22 83.53 | 86.08 85.58

-w/o KW | 87.29 81.77 | 85.51 85.00

Table 2: Political perspective detection performance on
two benchmark datasets. Acc and MaF denote accuracy
and macro-averaged F1-score. N/A indicates that the
result is not reported in previous works. TC and KW
indicate textual cues and knowledge walks respectively.



2/3 experiments

* Robust to knowledge walk length

SemEval
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3/3 experiments

* Improve data efficiency

* size(SemkEval) < size(AISI
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Future Work

* Better understand the contribution of KGs in NLP tasks
* |Is KG important in Task A?
 How do we assess the importance of KG in NLP task A?
* How do we enable information exchange between LMs and KGs?
* How does information flow between text and KGs?

* Hopefully ...
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